User-Friendly Tail Bounds for Sums of Random Matrices
نویسنده
چکیده
This work presents probability inequalities for sums of independent, random, selfadjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of rectangular matrices follow as an immediate corollary, and similar techniques yield information about matrix-valued martingales. In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same ease of use, diversity of application, and strength of conclusion that have made the scalar inequalities so valuable.
منابع مشابه
User-friendly Tail Bounds for Matrix Martingales
This report presents probability inequalities for sums of adapted sequences of random, self-adjoint matrices. The results frame simple, easily verifiable hypotheses on the summands, and they yield strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. The methods also specialize to sums of independent random matrices. 1. Main Results This technical report is...
متن کاملTail inequalities for sums of random matrices that depend on the intrinsic dimension
This work provides exponential tail inequalities for sums of random matrices that depend only on intrinsic dimensions rather than explicit matrix dimensions. These tail inequalities are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the explicit dimensions are large...
متن کاملDimension-free tail inequalities for sums of random matrices
We derive exponential tail inequalities for sums of random matrices with no dependence on the explicit matrix dimensions. These are similar to the matrix versions of the Chernoff bound and Bernstein inequality except with the explicit matrix dimensions replaced by a trace quantity that can be small even when the dimension is large or infinite. Some applications to principal component analysis a...
متن کاملBounds for Tail Probabilities of Weighted Sums of Independent Gamma Random Variables
The tail probabilities of two weighted sums of independent gamma random variables are compared when the first vector of weights majorizes the second vector of weights. The conjecture that the two cumulative distribution .functions cross exactly once is established in four special cases by means of the variation-diminishing property of totally positive kernels. Bounds are obtained for the locati...
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 12 شماره
صفحات -
تاریخ انتشار 2012